K3-поверхность - definizione. Che cos'è K3-поверхность
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è K3-поверхность - definizione


K3-поверхность         
K3-поверхность есть связная односвязная компактная комплексная поверхность (то есть комплексное многообразие комплексной размерности два), допускающая нигде не вырожденную голоморфную дифференциальную форму степени два. В алгебраической геометрии, где рассматриваются многообразия над полями иными, нежели комплексные числа, K3-поверхностью называется алгебраическая поверхность с тривиальным каноническим расслоением, не допускающая алгебраических 1-форм.
Поверхность Ферми         
ПОВЕРХНОСТЬ ПОСТОЯННОЙ ЭНЕРГИИ В K-ПРОСТРАНСТВЕ, РАВНОЙ ЭНЕРГИИ ФЕРМИ В МЕТАЛЛАХ ИЛИ ВЫРОЖДЕННЫХ ПОЛУПРОВОДНИКАХ.
Ферми поверхность; Ферми-поверхность
Поверхность Ферми — поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур.
Ферми поверхность         
ПОВЕРХНОСТЬ ПОСТОЯННОЙ ЭНЕРГИИ В K-ПРОСТРАНСТВЕ, РАВНОЙ ЭНЕРГИИ ФЕРМИ В МЕТАЛЛАХ ИЛИ ВЫРОЖДЕННЫХ ПОЛУПРОВОДНИКАХ.
Ферми поверхность; Ферми-поверхность

изоэнергетическая поверхность в пространстве квазиимпульсов р, отделяющая область запятых электронных состоянии металла от области, в которой при Т = 0 К электронов нет. За большинство свойств металлов (См. Металлы) ответственны электроны, расположенные на Ф. п. и в узкой области пространства Квазиимпульсов вблизи неё. Это связано с высокой концентрацией электронов проводимости в металле, плотно заполняющих уровни в зоне проводимости (см. Вырожденный газ, Твёрдое тело). Каждый металл характеризуется своей Ф. п., причём формы поверхностей разнообразны (рис.). Для "газа свободных электронов" Ф. п. - сфера. Объём, ограниченный Ф. п. ΩF (приходящейся на 1 элементарную ячейку (См. Элементарная ячейка) в пространстве квазиимпульсов), определяется концентрацией n электронов проводимости в металле: 2ΩF/(2πħ)3 = n. Средние размеры Ф. п. для хороших металлов Ферми поверхность ħ/a, где ħ - Планка постоянная, а - постоянная решётки, обычно n 1/a3. У большинства металлов, кроме большой Ф. п., обнаружены малые полости, объём которых значительно меньше, чем (2πħ)3n/2. Эти полости определяют многие квантовые свойства металлов в магнитном поле (например, де Хааза - ван Альфена эффект (См. Де Хааза - ван Альфена эффект)). У полуметаллов (См. Полуметаллы) объём Ф. п. мал по сравнению с размерами элементарной ячейки в пространстве квазиимпульсов. Если занятые электронами состояния находятся внутри Ф. п., то она называется электронной, если же внутри Ф. п. электронные состояния свободны, то такая поверхность называется дырочной. Возможно одновременное существование обеих Ф. п. Например, у Bi Ф. п. состоит из 3 электронных и 1 дырочного эллипсоидов. В Ф. п. находит отражение Симметрия кристаллов. В частности, они периодичны с периодом 2πħb, где b - произвольный вектор обратной решётки. Все Ф. п. обладают центром симметрии. Встречаются Ф. п. сложной топологии (с самопересечениями), которые одновременно являются и электронными, и дырочными. Если Ф. п. непрерывно проходит через всё пространство квазиимпульсов, она называется открытой. Если Ф. п. распадается на полости, каждая из которых помещается в одной элементарной ячейке пространства квазиимпульсов, она называется замкнутой, например у Li, Au, Си, Ag - открытые Ф. п., у К, Na, Rb, Cs, In, Bi, Sb, Al - замкнутые. Иногда Ф. п. состоит из открытых и замкнутых полостей. Скорости электронов, расположенных на Ф. п.: υF ≈ 108 см/сек, вектор (направлен по нормали к Ф. п.

Геометрические характеристики Ф. п. (форма, кривизна, площади сечений и т.п.) связаны с физескими свойствами металлов, что позволяет строить Ф. п. по экспериментальным данным. Например, Магнетосопротивление металла зависит от того, открытая Ф. п. или замкнутая, а знак константы Холла (см. Холла эффект) от того, электронная она или дырочная. Период осцилляций магнитного момента (в эффекте де Хааза - ван Альфена) определяется экстремальной (по проекции квазиимпульса на магнитное поле) площадью сечения Ф. п. Поверхностный импеданс металла в условиях аномального Скин-эффекта зависит от средней кривизны Ф. п. Период (по магнитному полю) осцилляций коэффициета поглощения Ультразвука металлом обратно пропорционален экстремальному диаметру Ф. п. Частота циклотронного резонанса (См. Циклотронный резонанс) определяет эффективную массу (См. Эффективная масса) электрона, знание которой позволяет найти скорость электронов на Ф. п. Для большинства одноатомных металлов и многих интерметаллических соединений Ф. п. уже изучены. Теоретическое построение Ф. п. основано на модельных представлениях о движении валентных электронов в силовом поле ионов.

Лит.: Каганов М. И., Филатов А. П., Поверхность Ферми, М., 1969.

М. И. Каганов.

Различный типы ферми поверхностей.

Che cos'è K3-поверхность - definizione